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a  b  s  t  r  a  c  t

In  this  review  article  an  overview  of  the  history  and  current  status  of  neurofeedback  for  the  treatment  of
ADHD  and  insomnia  is  provided.  Recent  insights  suggest  a central  role  of circadian  phase  delay,  resulting
in  sleep  onset  insomnia  (SOI)  in a sub-group  of  ADHD  patients.  Chronobiological  treatments,  such  as
melatonin  and  early  morning  bright  light,  affect  the  suprachiasmatic  nucleus.  This  nucleus  has  been
shown  to  project  to the  noradrenergic  locus  coeruleus  (LC)  thereby  explaining  the  vigilance  stabilizing
effects  of such  treatments  in ADHD.  It is  hypothesized  that  both  Sensori-Motor  Rhythm  (SMR)  and  Slow-
Cortical  Potential  (SCP)  neurofeedback  impact  on the  sleep  spindle  circuitry  resulting  in  increased  sleep
diopathic insomnia
DHD
pilepsy
nsomnia
ircadian phase delay
leep spindles

spindle  density,  normalization  of  SOI and thereby  affect  the  noradrenergic  LC,  resulting  in  vigilance
stabilization.  After SOI  is normalized,  improvements  on ADHD  symptoms  will  occur  with  a delayed  onset
of effect.  Therefore,  clinical  trials  investigating  new  treatments  in  ADHD  should  include  assessments  at
follow-up  as  their  primary  endpoint  rather  than  assessments  at outtake.  Furthermore,  an  implication
requiring  further  study  is that  neurofeedback  could  be stopped  when  SOI is  normalized,  which  might
result  in  fewer  sessions.
igma © 2012  Elsevier  Ltd.  All  rights  reserved.
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1. Introduction 

Recent years have seen a re-emergence of research covering the 

application of neurofeedback. Neurofeedback is a method based 
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on operant learning mechanisms (Sherlin et al., 2011) which is 45

hypothesized to ‘normalize’ deviant brain activity. Neurofeedback 46

has been classified as an efficacious treatment for ADHD based 47

on guidelines of the American Psychological Association (APA) 48

dx.doi.org/10.1016/j.neubiorev.2012.10.006
dx.doi.org/10.1016/j.neubiorev.2012.10.006
http://www.sciencedirect.com/science/journal/01497634
http://www.elsevier.com/locate/neubiorev
mailto:martijn@brainclinics.com
dx.doi.org/10.1016/j.neubiorev.2012.10.006
Ricoissimo
Highlight

Ricoissimo
Highlight



 ING Model
N

2 nd Bio

(49

t50

e51

252

i53

b54

l55

i56

u57

t58

f59

60

p61

m62

a63

s64

V65

i66

o67

68

r69

i70

t71

a72

i73

174

75

e76

i77

t78

c79

w80

a81

d82

183

c84

t85

s86

c87

i88

t89

m90

a91

e92

(93

94

c95

S96

c97

s98

(99

c100

s101

s102

d103

o104

t105

i106

a107

s108

m109

c110

s111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

Q3 156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173
ARTICLEBR 1643 1–13

 M. Arns, J.L. Kenemans / Neuroscience a

Arns et al., 2009). Neurofeedback has also been investigated in
he treatment of epilepsy (Tan et al., 2009), insomnia (Cortoos
t al., 2010; Hauri et al., 1982; Hauri, 1981; Hoedlmoser et al.,
008; Sterman et al., 1970) and cognition (See Gruzelier in this

ssue). However, APA standards do not require single or double-
linded experimental designs. This certainly contributes to the

imited understanding of how exactly neurofeedback exerts its clin-
cal effects in these disorders. Fathoming the exact mechanisms
nderlying neurofeedback’s effect is crucial for improving clinical
rial designs investigating the efficacy of neurofeedback as well as
or optimizing the efficacy of neurofeedback.

Recently there have been new insights into the clinical patho-
hysiology of ADHD. These include insights from the EEG-Vigilance
odel (Hegerl et al., this issue), the role of sleep onset-insomnia

nd the possible efficacy of chronobiological treatments for ADHD
uch as melatonin and morning bright light (Rybak et al., 2006;
an der Heijden et al., 2005, 2007; Van Veen et al., 2010). These

nsights provoke new considerations regarding the specific effects
f neurofeedback in ADHD and insomnia.

This review paper will provide a review of neurofeedback
esearch focused on the application in ADHD and sleep The new
nsights above will be further reviewed and integrated into a model
hat can explain the clinical effects of neurofeedback and circadian
dvancing treatments in ADHD and insomnia, and also provides
nsight into the development of new treatments for ADHD.

.1. From EEG conditioning to Neurofeedback

Classical conditioning of the EEG has been demonstrated as
arly as in 1935 in France (Durup and Fessard, 1935), and 1936
n the United States (Loomis et al., 1936), just a few years after
he first description of the EEG by Berger in 1929. In the 1940s
lassical conditioning of the alpha blocking response in the EEG
as more systematically investigated It was found that the EEG

lpha blocking response fulfilled all of the Pavlovian types of con-
itioned responses (Jasper and Shagass, 1941; Knott and Henry,
941). These early studies clearly demonstrate that principles of
lassical conditioning can be applied to EEG parameters such as
he alpha blocking response. Further support for this comes from
everal recent studies demonstrating that not only cortical EEG
an be conditioned (reviewed in Sherlin et al., 2011), but that it
s also possible to condition more focal neuronal activity such as
he activity in monkey frontal eye fields (Schafer and Moore, 2011),

armoset intra-cortical Sensori-Motor Rhythm or SMR  (Philippens
nd Vanwersch, 2010), and human medial temporal cortex (Cerf
t al., 2010) and early visual processing areas such as V1 and V2
Shibata et al., 2011).

A first attempt of classical conditioning of spike-wave dis-
harges in patients with epilepsy was unsuccessful (Stevens and
tevens, 1960) or at least difficult (Stevens et al., 1967). Operant
onditioning of epileptic multi-unit activity has been demon-
trated, albeit without sustained effects of decreased seizure rates
Fetz and Wyler, 1973; Wyler et al., 1974). This was recently
onfirmed by Osterhagen et al. (2010) who were unable to demon-
trate an increase in seizure rates in rats when the occurrence of
pike-wave discharges was  reinforced, suggesting that spike-wave
ischarges cannot be ‘conditioned’ or trained directly. The difficulty
f this direct conditioning of epileptic states may  be the result of
he decreased level of consciousness during such states preclud-
ng efficient learning from taking place during the occurrence of

 seizure. The first successful applications of EEG conditioning on
Please cite this article in press as: Arns, M.,  Kenemans, J.L., Neurofeedb
spindles and circadian networks. Neurosci. Biobehav. Rev. (2012), http

eizures were not reported until the early 1960s by Barry Ster-
an. His work involved the training of Sensori-Motor Rhythm, also

alled SMR, in the cat. In a serendipitous finding the anticonvul-
ant effects of operant conditioning of this rhythm in cats exposed

174

175
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to the pro-convulsant Monomethylhydrazine was demonstrated 

(Sterman et al., 1969, 2010). 

During those early days this technique was  referred to as ‘EEG 

Biofeedback’. The first demonstrations of SMR  neurofeedback with 

potential clinical implications were reported in cats related to 

epilepsy (Sterman et al., 1969, 2010) and sleep (Sterman et al., 

1970), shortly followed by the clinical applications in humans with 

epilepsy (Sterman and Friar, 1972) and ADHD (Lubar and Shouse, 

1976). Contemporaneously Kamiya demonstrated voluntary con- 

trol over alpha activity and alpha peak frequency (APF) (Kamiya, 

1968). This work has resulted in, among others, the application of 

alpha/theta neurofeedback in the treatment of addictions and opti- 

mal  performance (reviewed in Gruzelier, 2009) and inspired several 

well controlled studies investigating training of upper-alpha power 

resulting in improved cognitive performance (Hanslmayr et al., 

2005; Zoefel et al., 2011; for more details also see Gruzelier, this
issue).

In parallel with the development of SMR  and alpha related ‘fre-
quency’ neurofeedback or Alternating Current (AC) Neurofeedback, 

the first demonstration of voluntary control over the ‘Contin-
gent Negative Variation’ or CNV was  demonstrated in 1966 by 

McAdam et al. (1966).  Elbert and Birbaumer further pioneered the
first studies on voluntary control of slow cortical potentials (SCPs) 

employing a biofeedback procedure, with the goal of investigating 

the functional relationship between SCP and the performance dur- 

ing a signal detection task (Lutzenberger et al., 1979; Elbert et al., 

1980). Neurofeedback of these slow cortical potentials, or SCP’s is 

also referred to as Direct Current (DC) neurofeedback. The differ- 

ence is that feedback is not provided based on the amplitude of a 

given frequency band, but rather on the polarity of the slow EEG 

content, e.g. surface-positivity or surface-negativity. Based on the 

observation that pro-convulsive procedures such as hyperventila- 

tion resulted in increased surface-negativity and anticonvulsants 

result in decreased surface-negativity, this SCP procedure was 

investigated in drug refractory epilepsy patients in a double-blind 

placebo controlled design. In this study SCP neurofeedback was 

compared to alpha-power neurofeedback, and only the group who  

received SCP neurofeedback demonstrated a significant reduction 

in seizure frequency (Rockstroh et al., 1993). 

In 2004, the first application of SCP neurofeedback in the treat- 

ment of ADHD was published (Heinrich et al., 2004). Generally the 

effects of SCP Neurofeedback appear similar to the effects of SMR
and Theta/Beta neurofeedback for epilepsy (Tan et al., 2009) and 

for ADHD (Leins et al., 2007; Arns et al., 2009; Gevensleben et al., 

2009a,b). 

Fig. 1 visualizes this history further, by graphing the number of 

publications per year for 3 different keywords, which have histori- 

cally been used to refer to neurofeedback related techniques since 

1941. 

The early research focused on investigating classical condition- 

ing of the EEG, in Fig. 1 this is visualized by the green bars and 

green trend line (floating average, 2 points). During the 1940s and 

1950s some research on this topic was published, but this research 

actually surged in the beginning of the 1960s with a peak in 1975. 

Following the first publications on operant conditioning of EEG 

by Wyrwicka and Sterman (1968),  as well as the work on con- 

scious control of EEG alpha activity by Kamiya in 1968 (Kamiya, 

1968, 2011) and studies showing voluntary control over the CNV 

(McAdam et al., 1966), we see an increase in publications referring 

to ‘EEG Biofeedback’, which remained the pre-dominant term for 

neurofeedback until the end of the 1990s. The term ‘neurofeedback’ 

was first used by Nahmias, Tansey and Karetzky in 1994 (Nahmias 

et al., 1994). Since that time neurofeedback has become the pre-
dominant term as is clearly visible in Fig. 1, with the number of
ack in ADHD and insomnia: Vigilance stabilization through sleep
://dx.doi.org/10.1016/j.neubiorev.2012.10.006

publications covering this term dramatically increasing in 2010 and 176

2011. 177

dx.doi.org/10.1016/j.neubiorev.2012.10.006
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Fig. 1. Frequency of different keywords related to neurofeedback and their frequency of occurrence in the scientific literature per year. Green reflects ‘EEG AND conditioning’;
Red  reflects ‘EEG Biofeedback’ and Blue reflects ‘Neurofeedback’. Note that 2011* indicates the extrapolated number for 2011; based on the absolute numbers from August
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5th  2011 (obtained using SCOPUS).

.2. Current status of neurofeedback for ADHD and insomnia

Since the initial report of Lubar and Shouse (1976) on SMR  neu-
ofeedback in ADHD and the initial report of Heinrich et al. (2004) of
CP Neurofeedback in ADHD, much research has been conducted on
hese 2 neurofeedback protocols in ADHD. SMR  Neurofeedback is
lso referred to as Theta/Beta neurofeedback, where it is interesting
o note that although the beta frequency band often used is broader
e.g. 12–20 Hz) than either Sterman’s original 11–19 Hz range for
MR  or the more traditional 12–15 Hz used for SMR; all studies still
nclude the SMR  band along with a theta inhibit used for both pro-
ocols. Furthermore, all these studies have trained at fronto-central
ocations (also see Arns et al., 2009; Table 1) typical for SMR. There-
ore, in this review where we refer to SMR  Neurofeedback this also
ncludes Theta/Beta neurofeedback.

Currently, there are 8 published randomized controlled trials
RCT’s), which investigated SCP neurofeedback and/or SMR  neu-
ofeedback (Linden et al., 1996; Levesque, Beauregard, Mensour,
006; Leins et al., 2007; Gevensleben et al., 2009a,b; Holtmann
t al., 2009; Perreau-Linck et al., 2010; Steiner et al., 2011; Bak-
hayesh et al., 2011). All these studies except Perreau-Linck et al.
2010) demonstrated significant improvements on measures of
nattention, hyperactivity or impulsivity compared to the con-
rol groups. This was confirmed by a meta-analysis conducted
n 2009 by Arns and colleagues incorporating 15 studies (total

 = 1194) where it was concluded that neurofeedback resulted in
arge and clinically relevant effect sizes (ES) for inattention and
mpulsivity and a low to medium ES for hyperactivity. Further-

ore, the specificity of neurofeedback treatment in ADHD has been
emonstrated by normalizations of Event Related Potentials (ERP’s)
fter treatment, reflecting an improved information-processing
Arns et al., 2012; Heinrich et al., 2004; Kropotov et al., 2005,
Please cite this article in press as: Arns, M.,  Kenemans, J.L., Neurofeedb
spindles and circadian networks. Neurosci. Biobehav. Rev. (2012), http

007; Wangler et al., 2011), normalizations of EEG power post-
reatment (Doehnert et al., 2008; Gevensleben et al., 2009a,b) and
ffects on neural substrates of selective attention imaged with fMRI
Lévesque et al., 2006).
Several studies have also directly compared the efficacy of neu-
rofeedback with stimulant medication. Most have found the effects 

to be similar for measures of inattention, impulsivity and hyperac- 

tivity (Rossiter and La Vaque, 1995; Monastra et al., 2002; Fuchs 

et al., 2003; Rossiter, 2004), which was also confirmed in the meta- 

analysis (Arns et al., 2009). However, none of these studies used 

a randomized group assignment design, and patients self-selected 

their preferred treatment. This may  bias the results. Based on these 

studies it cannot be concluded that neurofeedback is as effec- 

tive as stimulant medication. Interestingly, the ES reported for 

methylphenidate in a recent meta-analysis is comparable to the 

ES for neurofeedback (NF) for improvements in measurements of 

inattention (ES NF = 0.81; ES Methylphenidate = 0.84), whereas for 

impulsivity/hyperactivity the ES for methylphenidate is higher (ES 

NF = 0.4/0.69; ES Methylphenidate = 1.01) (Faraone and Buitelaar, 

2009; Sherlin et al., 2010a,b; Arns et al., 2009). This suggests that 

the effects of neurofeedback and methylphenidate appear similar, 

at least for inattention. Further randomized controlled studies are 

required to substantiate this observation. 

The most adequately designed randomized controlled trials 

(RCTs) investigating neurofeedback in ADHD have used semi-active 

control groups such as attentional training (Gevensleben et al., 

2009a,b) or EMG  Biofeedback (Bakhshayesh et al., 2011), but none 

have used a double-blind placebo controlled design. The current 

controversy regarding the efficacy of neurofeedback in ADHD is 

centered around the appropriate design standards for these studies. 

Some suggest that neurofeedback should be evaluated as a psy- 

chological treatment using the APA guidelines (Arns et al., 2009; 

Sherlin et al., 2010a,b), though others prefer designs used for rat- 

ing new drugs requiring a double-blind placebo controlled study 

(e.g.: Lofthouse et al., 2010, 2011). Given the fact that neurofeed-
back is based on operant conditioning principles, it is crucial that 
ack in ADHD and insomnia: Vigilance stabilization through sleep
://dx.doi.org/10.1016/j.neubiorev.2012.10.006

the active treatment and planned control condition be in line with 245

principles of learning theory and conditioning principles. Adhering 246

to these basic principles is required for any learning to take place, 247

including paying heed to such aspects as latency of reinforcement, 248
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pecificity of reinforcement, shaping and generalization. A double-
lind design often demands a deviation from such principles. For
xample such studies often use auto-tresholding to remain double-
linded. With auto-tresholding the child will always be rewarded,
hether active learning is taking place or whether the child is
oing nothing, whereas motivating or coaching the child to per-
orm better (shaping or scaffolding) will promote the occurrence
f the reinforced behavior and thus facilitate learning. Another
xample is the use of non-contingent feedback or random rein-
orcement as a control condition. Though this is often interpreted as
n inert condition, such a random reinforcement schedule is known
o result in ‘superstitious behavior’ in pigeons (Skinner, 1948) and

an  (Koichi, 1987), bringing into question whether these control
onditions truly represent an inert condition.

Four recent studies have employed a placebo-controlled design
nd failed to find a difference between neurofeedback and sham-
eurofeedback (Lansbergen et al., 2010; Perreau-Linck et al.,
010; deBeus and Kaiser, 2010; Arnold et al., 2012). Note that
nly Perreau-Linck et al. (2010) employed SMR  Neurofeedback,
hereas the other studies employed an unconventional neuro-

eedback protocol such as ‘QEEG-based’ protocols with 2-channel
raining (Lansbergen et al., 2010) or training of the ‘engage-

ent index’ involving beta, theta and alpha (deBeus and Kaiser,
010; Arnold et al., 2012). Furthermore, these studies employed:
1) a control condition consisting of non-contingent feedback or
andom-reinforcement (DeBeus and Kaiser, 2011; Lansbergen et al.,
011; Perreau-Linck et al., 2010); and (2) auto-tresholding. As indi-
ated above, these approaches deviate from principles of learning
heory. DeBeus and Kaiser (2011) supported this notion further in
heir randomized double-blind placebo controlled study. They did
ot find a difference between neurofeedback and placebo groups
n ADHD symptoms (DeBeus, personal communication). However,
hen comparing ‘learners’, who demonstrated an increase of at

east 0.5 SD in the ‘engagement index’ between baseline to end
f treatment (74% of the sample) vs. ‘non-learners’, there were
ignificant effects of neurofeedback on teacher ratings and a CPT
est. Thus further confirming the importance of implementing
rinciples of learning theory in neurofeedback. None of the other
lacebo-controlled studies reported evidence of learning actually
aving taken place, such as learning curves. Non-specific or placebo
ffects as an explanation for the effects of neurofeedback in these
tudies cannot be ruled out at this moment and still requires fur-
her study. Future double-blind placebo controlled studies should
mploy well-investigated neurofeedback protocols such as SMR  or
CP protocols and ensure that learning actually takes place. For

 review proposing a double-blind design fulfilling these princi-
les, also see The Collaborative Neurofeedback Group (submitted
or publication).

Several randomized studies have demonstrated that the effects
f neurofeedback in ADHD are maintained following training at the

 month follow-up (Gevensleben et al., 2010; Leins et al., 2007;
trehl et al., 2006) and 2-year follow-up (Gani et al., 2008). These
esults show a tendency to improve further with time, as seen in
ig. 2. This figure depicts the within-subject ES between pre- and
ost-treatment; between pre-treatment and 6 month follow-up
nd between pre-treatment and 2 years follow-up for 3 RCTs. The
S has been plotted for the control group from both the 6 month
Gevensleben et al., 2010) and 2 year follow up, and they show
he improvement on the FBB-HKS (a German ADHD rating scale)
etween 7–10 years and 14–17 years of age in a normative group
Erhart et al., 2008). These ES associated with long-term follow-
p indicate improvements associated with non-specific effects and
Please cite this article in press as: Arns, M.,  Kenemans, J.L., Neurofeedb
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ging effects. It is interesting and promising to note that the effects
f neurofeedback in ADHD tend to improve further with time.
his also hints to perhaps the most attractive aspect of neuro-
eedback, namely the perspective that a finite treatment may  yield
 PRESS
behavioral Reviews xxx (2012) xxx–xxx

permanent beneficial effects. A limitation of such studies is always 

the low follow-up rates, such as 63% of Neurofeedback treated, 

66% of the control group in the Gevensleben study (2010a) and 

the 44–55% rate after 2 years follow up in the Gani et al. (2008) 

study. Furthermore, the number of studies where follow-up was 

conducted is very limited, making generalization of these findings 

difficult and requiring further study. 

After the first report on operant conditioning of SMR  in cat (Wyr- 

wicka and Sterman, 1967), Sterman, Howe and Macdonald in 1970 

convincingly demonstrated that SMR  enhancement training during 

wakefulness resulted in increased sleep spindle density, accompa- 

nied by a reduction of phasic movements during sleep. Conversely, 

rewarding beta (excluding SMR), did not demonstrate this effect 

during sleep. Furthermore, after SMR  training the sleep spindle 

density during sleep, remained increased at post-assessment, sug- 

gesting these effects were long-lasting. Hoedlmoser et al. (2008)
replicated this finding in humans in a placebo controlled RCT
where SMR  enhancement training resulted in shorter sleep laten-
cies, accompanied by an increased sleep spindle density during 

sleep and improvements in declarative memory. More recently,
Cortoos et al. (2010) conducted a RCT where patients were random- 

ized to EMG  Biofeedback or SMR  Neurofeedback. Improvements 

were initially expected for both groups, based on Sterman’s work 

and relaxation related improvements of EMG  Biofeedback. They 

demonstrated that SMR  neurofeedback in patients with primary 

insomnia resulted in increased total sleep time as compared to EMG  

biofeedback. 

These studies provide clear evidence of SMR  neurofeedback’s 

effect of improving sleep. Placebo-effects in these studies are ruled 

out due to the placebo-control design used in these studies includ- 

ing randomized frequency conditioning (Hoedlmoser et al., 2008) 

and EMG  biofeedback (Cortoos et al., 2010) as well as by the obser- 

vation that SMR  training during wakefulness resulted in increased 

sleep spindle density during sleep, only for the SMR  Neurofeedback 

group (Sterman et al., 1970; Hoedlmoser et al., 2008). The clini- 

cal relevance of these effects in insomnia should be investigated 

further by replicating these effects in a group of clinical insom- 

nia patients, investigating the usefulness of this approach in actual 

clinical practice. 

2. Impaired vigilance regulation in ADHD 

The most consistent EEG findings reported in the literature on 

ADHD are those of increased absolute power in Theta (Bresnahan 

et al., 1999; Chabot and Serfontein, 1996; Clarke et al., 1998, 

2001a,b; DeFrance et al., 1996; Janzen et al., 1995; Lazzaro et al., 

1998, 1999; Mann et al., 1992; Matsuura et al., 1993) and some- 

times increased absolute Delta EEG power (Bresnahan et al., 1999; 

Clarke et al., 2001a,b; Kuperman et al., 1996; Matsuura et al., 1993). 

Conceptually, these EEG findings in ADHD are consistent with the 

EEG Vigilance model originally developed by Bente (1964) and pre- 

sented in more detail in this issue by Hegerl et al. More specifically 

these findings of slower EEG content reflect impaired vigilance 

regulation (Sander et al., 2010 and reviewed below), which also 

overlaps with what is sometimes referred to as ‘underarousal’ and 

also with the EEG cluster described as ‘cortical hypoarousal’ (Clarke 

et al., 2011). Other neurophysiological sub-groups in ADHD have 

also been reported such as an excess beta group and a ‘maturational 

lag’ subgroup (Arns, 2012; Clarke et al., 2011), however cover- 

age of these neurophysiological sub-groups is beyond the scope of 

this review, though the interested reader is referred to Barry et al.
ack in ADHD and insomnia: Vigilance stabilization through sleep
://dx.doi.org/10.1016/j.neubiorev.2012.10.006

(2003) or Arns (2012).  374

The EEG is considered the gold standard for classifying the sleep 375

stages based on the Rechtshaffen and Kales criteria (1968). Quali- 376

tatively different stages are defined such as stages 1–4, which are 377
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Fig. 2. Within subject Hedges’ D ES for 3 randomized studies who  have performed 6 month and 2 year follow-up data for inattention (left) and hyperactivity (right). For
Post-Treatment and 6 month follow-up the ES for the control group from the Gevensleben et al. (2010) study has been plotted as a comparison for non-specific effects across
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S.)

on-rapid eye movement sleep (NREM) with increasing sleep depth
rom stage I through stage 4. Stage 3 and 4 are referred to as Slow

ave Sleep (SWS), and rapid eye movement sleep (REM) represents
dreaming”. The EEG Vigilance model can be regarded as an exten-
ion of this sleep stage model with a focus on the transition from
elaxed wakefulness through drowsiness to sleep onset, which is
een in stage 2. These vigilance model stages find their origins in
he early work of Loomis et al. (1937),  later modified by Roth (1961)
nd Bente (1964). In this model the EEG stages described reflect
ecreasing levels of vigilance from A1, to A2, A3, B1, B2 to B3. The
hree A stages reflect stages where alpha activity is dominant pos-
erior (A1), followed by alpha anteriorization (A3), whereas B stages
re reflective of the lowest vigilance stages, which are characterized
y an alpha drop-out or low-voltage EEG (B1) followed by increased
rontal theta and delta activity (B2/3). These vigilance stages are fol-
owed by the occurrence of K-complexes and sleep spindles, which

ark the transition to stage C in the vigilance model, or classically
o stage II sleep (NREM).

This EEG Vigilance regulation is a reflection of the process of
falling asleep’ and is measured during an eyes closed condition.
EG Vigilance regulation can be ‘rigid’, meaning that an individ-
al remains in higher vigilance stages for an extended time and
oes not exhibit lower vigilance stages. This would be seen as rigid
arietal alpha (stage A1), which is often seen in Depression (Ulrich
nd Fürstenberg, 1999; Hegerl et al., 2011). On the other hand, EEG
igilance regulation can be ‘labile’ or ‘unstable’, meaning that an

ndividual very quickly drops to lower EEG Vigilance stages, dis-
Please cite this article in press as: Arns, M.,  Kenemans, J.L., Neurofeedb
spindles and circadian networks. Neurosci. Biobehav. Rev. (2012), http

laying the characteristic drowsiness EEG patterns such as frontal
heta (stage B2/3), and they switch more often between EEG Vigi-
ance stages. This labile or unstable pattern is often seen in ADHD
been plotted as an indication of improvements of ADHD symptoms related to aging
ease with time, most specifically for hyperactivity. (Error bars are Variability of the

(Sander et al., 2010). The often-reported ‘excess theta’ in ADHD
mentioned above should thus be viewed as a predominance of the 

low B2/3 vigilance stages. 

These different EEG stages and their relationship to vigilance 

have been well described in the literature (e.g. theta as a sign of 

drowsiness). Several recent validation studies have demonstrated 

the validity of these EEG Vigilance stages (e.g. Olbrich et al., 2009, 

2011, 2012) and are reviewed in a recent publication (Arns et al., 

2010). 

The EEG Vigilance model explains the relationship between EEG 

states and behavior by means of vigilance regulation, which is a 

phenomenon we are all familiar with. The following example illus- 

trates this further: After a tiring day, EEG vigilance regulation in 

a healthy individual will become unstable and demonstrate more 

of the lower vigilance stages. This has a classical EEG signature 

often referred to as ‘fatigue’ or ‘drowsiness’, which is expressed 

as alpha anteriorization (Broughton and Hasan, 1995; Connemann 

et al., 2005; De Gennaro et al., 2001, 2004, 2005; Pivik and Harman, 

1995) and increased frontal slow waves (Strijkstra et al., 2003; 

Tanaka et al., 1996, 1997). In the EEG vigilance model these changes 

seen in drowsiness are referred to as stage A2–A3 for the anterior 

alpha and B2–B3 for the anterior theta, respectively (see Hegerl 

et al., this issue). In young children we all know the example of the 

hyperactive, ‘high-spirited’ behavior in over-tired children. This is 

a clear example of vigilance autostabilization behavior (i.e. keep-
ing himself awake by moving). A healthy adult displaying this type 

of EEG at home and near bedtime will feel sleepy and decide to 
ack in ADHD and insomnia: Vigilance stabilization through sleep
://dx.doi.org/10.1016/j.neubiorev.2012.10.006

‘withdraw’, seeking an environment with low external stimulation, 435

thus increasing the probability of falling asleep. However, when 436

this same healthy adult is driving a car with the same reduced 437
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EG Vigilance, he will: turn up the volume of the music, open the
indow, turn-down the air-conditioning, and so on, all to avoid

urther drowsiness. Hence the healthy adult will exhibit autostabi-
ization or externalizing behavior in order to keep himself awake.
urthermore, when the car in front of him unexpectedly brakes,
e is more likely to respond slowly (impaired sustained attention)
nd the likelihood of a car accident is increased due to this reduced
igilance or drowsiness (Miller, 1995).

A summary of this model is depicted in Fig. 3. An unstable vig-
lance regulation explains the cognitive deficits that characterize
DHD and ADD, such as impaired sustained attention. This vig-

lance stabilization behavior explains the hyperactivity aspect of
DHD as an attempt to up regulate vigilance.

To summarize, in the majority of ADHD patients an EEG pattern
s observed illustrative of a reduced and unstable vigilance regu-
ation (i.e. the same EEG signature a healthy, but fatigued person

ould demonstrate at the end of the day). In turn, some unknown
actor induces autostabilization or externalizing behavior, which
an be either adaptive (i.e. keeping oneself awake while driving a
ar) or mal-adaptive (i.e. the hyperactivity in ADHD), depending on
he circumstance.

Conceptually, unstable vigilance has repercussions for the cor-
ical vigilance network as proposed by Posner and Petersen (1990)
nd Corbetta and Shulman (2002).  Part of this network is the right
nferior frontal gyrus, which is hypothesized to control a flexible
nhibitory link between cortical sensory and motor systems; this
ink is in turn instrumental in processing of eternal signals that
rompt a change in behavioral priorities or strategies (Bekker et al.,
005a).  Off medications, adult ADHD patients are characterized by

mpairments in both the behavioral and electrocortical aspects of
his flexibly controlled inhibitory link (Aron et al., 2003; Bekker
t al., 2005b; Overtoom et al., 2009).

.1. Sleep and ADHD

Reduced EEG Vigilance is observed in our earlier example of
riving a car very late at night while being tired, but reduced vigi-

ance can also be caused by enduring sleep restriction.
A recent meta-analysis incorporating data from 35,936 healthy

hildren reported that sleep-duration is positively correlated with
chool performance, executive function, and negatively correlated
ith internalizing and externalizing behavior problems (Astill et al.,

012). ADHD has also been associated with daytime sleepiness
Golan et al., 2004) and primary sleep disorders, sleep related move-

ent disorders and parasomnias (Chervin et al., 2002; Konofal et al.,
010; Walters et al., 2008). Symptoms associated with ADHD can
e induced in healthy children by sleep restriction (Fallone et al.,
001, 2005; Sadeh et al., 2003; Beebe et al., 2008), suggesting an
verlap between ADHD symptoms and sleep-disruptions.

Several open-label studies have demonstrated dramatic
mprovements in ADHD symptoms after normalizing sleep. For
xample, Walters and colleagues reported that ADHD children who
ere unresponsive to stimulant medication, and were treated with

evodopa or a dopamine-agonist for restless legs syndrome (result-
ng in normalized sleep) demonstrated dramatic improvements in
DHD symptoms measured with the Conners Rating Scale (CRS)
nd Child Behavior Checklist (CBCL) (Walters et al., 2000). Huang
t al. (2007) reported that in ADHD children with sleep apnea,
denotonsillectomy resulted in substantial clinical improvements
n attention and ADHD complaints (measured with the CBCL and
OVA). These improvements were larger when compared to stimu-
ant medication. These studies suggest that a sub-group of children
Please cite this article in press as: Arns, M.,  Kenemans, J.L., Neurofeedb
spindles and circadian networks. Neurosci. Biobehav. Rev. (2012), http

ith ‘ADHD complaints’ actually suffers from a sleep disorder, and
f the sleep disorder is treated effectively the ‘ADHD complaints’
mprove. However, these specific sleep disorders, e.g. restless legs
nd breathing disorders, present in a limited percentage of the
 PRESS
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ADHD patients, estimated between 20% for sleep related breathing 

disorders (Silvestri et al., 2009) and 26% for restless legs syndrome 

(Konofal et al., 2010; Silvestri et al., 2009). 

2.2. Sleep onset insomnia and circadian phase delay in ADHD 

Several studies have investigated the occurrence of ‘idiopathic 

sleep-onset insomnia’ (SOI) also called ‘delayed sleep phase syn- 

drome’ in ADHD (Van der Heijden et al., 2005). SOI is defined as a 

difficulty falling asleep at a desired bedtime and/or a sleep onset 

latency of more than 30 min  for at least 4 nights a week, exist- 

ing for at least 6–12 months and leading to impairment in several 

areas (Smits et al., 2001; Van Veen et al., 2010). SOI should not be 

regarded as a full-blown sleep disorder, but rather as an inabil- 

ity or difficulty falling asleep. In general SOI is not related to ‘sleep 

hygiene’ (van der Heijden et al., 2006), is already present before the
age of 3 years in 70% of children (Van der Heijden et al., 2005), and is
also associated with a delayed Dim Light Melatonin Onset (DLMO)
suggesting a circadian phase delay (Van der Heijden et al., 2005; 

Van Veen et al., 2010). Van Veen et al. (2010) reported SOI in 78% of
a sample of adult ADHD patients, and a similar rate of 72–75% SOI 

has been reported in large samples of unmedicated pediatric ADHD 

(Van der Heijden et al., 2005). In further agreement with these 

findings, Rybak et al. (2007) reported that adult ADHD is character- 

ized by a higher prevalence of ‘evening types’, characteristic for a 

delayed circadian phase, strongly correlated with self-reported and 

neuropsychological measures of ADHD symptoms (CPT impulsivity 

errors). 

These studies suggest that at least a subgroup of patients with 

ADHD is characterized by a circadian phase delay, associated with 

delayed sleep onset, already present before the age of 3. These 

ADHD patients during the day are characterized by lower vigilance 

stages (e.g. more frontal theta and frontal alpha) and these EEG sub- 

types also respond well to stimulant medication (Arns et al., 2008), 

by virtue of its vigilance stabilizing properties. However, stimulant 

medications do not affect the core-symptomatology in the circa- 

dian phase delay subgroup, which is the cause of the lower vigilance 

levels. 

2.3. Chronic sleep-restriction and the effects on attention and 

externalizing behavior 

Van Dongen et al. (2003) systematically investigated the cumu- 

lative effects of sleep restriction in healthy volunteers over the 

course of 14 days, and found clear dose–response effects on cogni- 

tion of restricting sleep to 4, 6 or 8 h per night. Furthermore, they 

also reported that these effects progressively eroded performance 

on a psychomotor vigilance task and working memory over time, 

where performance was still worsening at day 14. This suggests 

that a chronic but slight reduction in total sleep time can result 

in cumulative effects across time on vigilance, attention and cog- 

nition. Similar findings have also been reported after 5–7 days of 

restricted sleep (Axelsson et al., 2008; Belenky et al., 2003). Per- 

formance improved after 3 recovery nights albeit not to pre-sleep 

restriction levels as opposed to 1 night of total sleep deprivation, 

which does normalize after a recovery night (Belenky et al., 2003). 

Normalization was also reported for reaction times and sleepi- 

ness within 7 recovery days, but ‘lapses’ (reflective of inattention) 

did not normalize after 7 recovery nights (Axelsson et al., 2008), 

demonstrating that the effects of chronic sleep restriction do not 

normalize after few recovery nights of sleep. Sleep restriction stud- 

ies have also been conducted in children, albeit not as extensively
ack in ADHD and insomnia: Vigilance stabilization through sleep
://dx.doi.org/10.1016/j.neubiorev.2012.10.006

as in adults. In general sleep restriction studies in healthy chil- 560

dren have all demonstrated impairments of attention (Fallone et al., 561

2001, 2005; Sadeh et al., 2003; Beebe et al., 2008), whereas only 562

Beebe et al. (2008) found increased externalizing behavior (e.g. 563

dx.doi.org/10.1016/j.neubiorev.2012.10.006
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Fig. 3. Overview of the relation between an unstable v

yperactivity and oppositional/irritable behaviors rated with the
RIEF) after 1 week of sleep restriction. Interestingly, in a replica-
ion study with a more naturalistic design (simulated classroom
et-up and blinded video-ratings), they replicated the findings
or inattention but also found that Theta EEG power tended to
e increased after a week of sleep restriction (effect size = 0.53)
Beebe et al., 2010) demonstrating that sleep restriction resulted
n impaired vigilance regulation (excess theta) as well as impaired
ttention. The relationship with externalizing behaviors such as
yperactivity and impulsivity was only found in Beebe et al. (2008)
ut not in other studies. On the other hand, the earlier mentioned
eta-analysis by Astill et al. (2012) did clearly demonstrate a rela-

ionship between total sleep time and externalizing behavior. This
eta-analysis failed to find a relationship with sustained attention

n children, whereas large effects sizes for this measure are found
n adults (Lim and Dinges, 2010). The interventional sleep restric-
ion studies above clearly indicated that attentional problems are
aused by chronic sleep restriction, whereas the meta-analytic
esults suggest an effect from decreased sleep duration on exter-
alizing behavior. Obviously these studies have been performed in
ealthy children and this may  not generalize to ADHD children.

This suggests that interventions aimed at restoring the SOI
nd/or circadian phase delay might not have immediate effects,
s opposed to psychostimulants which acutely increase vigilance
uring the day, but might take more time to exert their effects
n behavior. In this view, SOI caused by a circadian phase delay is
he underlying pathophysiology in a significant number of patients
ith ADHD, for which normalizing the circadian phase delay may

esult in clinical improvements, albeit with a delayed onset.
A large placebo controlled RCT investigation of ADHD showed

he effects of 4-weeks melatonin on sleep-onset latency and
ircadian phase, as assessed with the DLMO (Van der Heijden
t al., 2007). Post-treatment sleep-onset and DLMO latencies were
horter relative to placebo, which may  be due to melatonin-
nhanced signals from the nucleus suprachiasmaticus (SCN) to
he pineal gland. However, no improvements of ADHD symptoms
nd cognition were reported after this period of 4 weeks (Van der
eijden et al., 2007). A follow-up study revealed that after long-

erm treatment (2–3 years) improvements of behavior and mood
Please cite this article in press as: Arns, M.,  Kenemans, J.L., Neurofeedb
spindles and circadian networks. Neurosci. Biobehav. Rev. (2012), http

ere present only for children still using melatonin. It also showed
hat discontinuation of melatonin resulted in a relapse of sleep
nset insomnia, probably also in a delayed circadian phase (Hoebert
t al., 2009). In a study of Rybak et al. (2006),  adult ADHD patients
ce regulation and the behavioral symptoms of ADHD.

were treated with early morning bright light, which also has circa-
dian phase advancing effects. They reported improvements on the 

Brown adult ADD scale and neuropsychological measures (e.g. CPT,
Wisconsin Card Sorting Test) after 3 weeks of morning bright light 

therapy, with medium effect sizes (Rybak et al., 2006). These effects
appeared faster compared to the effects of melatonin, suggesting 

bright light might have faster effects. On the other hand, these were 

only medium effect sizes, and might have increased when a follow- 

up was performed after 6 months. These results suggest that in this 

sub-group of ADHD patients, normalizing SOI can be achieved by 

advancing the circadian phase delay by using melatonin or morning 

bright light, albeit with a delayed-onset of effect on ADHD symp- 

toms for melatonin compared to bright light. The fact that these 

complaints are already present in the majority of ADHD patients 

with SOI before the age of 3 (Van der Heijden et al., 2005), and 

that ADHD is most often diagnosed after the age of 5 or 6, fur- 

ther suggests that SOI results in an accumulation of impaired sleep 

(extended sleep restriction) across time which eventually results in 

unstable EEG vigilance regulation, as demonstrated by Beebe et al.
(2010).  

2.4. Sleep spindles and Sensori-motor rhythm 

Sensori-motor rhythm or SMR  is characterized by a frequency 

of 12–15 Hz being most pronounced across the sensorimotor strip 

(EEG locations C3, Cz and C4). This rhythm is too date still used in 

most neurofeedback studies in ADHD along with changing other 

frequencies such as Theta. Interestingly, this rhythm shares over- 

lap with sleep-spindles during stage-2 NREM sleep which have 

an identical topographical distribution but also an identical fre- 

quency. The first report of sleep spindles, also referred to as sigma 

waves, stems from the work by Loomis in 1935 where he described: 

‘. . .but frequently very regular bursts lasting 1 to 1.5 seconds of 15 

per second frequency appear. The amplitude builds regularly to a 

maximum and then falls regularly so that we have designated these 

“spindles”, because of their appearance. . .’.  Sleep spindles are consid- 

ered the hallmark of stage 2 NREM sleep (De Gennaro et al., 2001; De 

Gennaro and Ferrara, 2003) and are reduced in the night after sleep 

deprivation (Borbély et al., 1981; De Gennaro and Ferrara, 2003; 
ack in ADHD and insomnia: Vigilance stabilization through sleep
://dx.doi.org/10.1016/j.neubiorev.2012.10.006

Dijk et al., 1993; Huber et al., 2008), perhaps due to increased SWS  644

pressure after deprivation. Furthermore, the density of sleep spin- 645

dle occurrence exhibits a strong circadian modulation comparable 646

to the melatonin rhythm (De Gennaro and Ferrara, 2003; Dijk et al., 647
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997). Full-developed sleep spindles are already present at 8–9
eeks after birth and stabilize at 23 weeks (De Gennaro and Ferrara,

003) and hence do not display the typical maturational effects on
requency, characteristic for posterior alpha activity (Niedermeyer
nd Da Silva, 2004).

As pointed out in section 1.2 several studies have demonstrated
hat SMR  neurofeedback, results in increased sleep spindle den-
ity during sleep (Hoedlmoser et al., 2008; Sterman et al., 1970),
ecreased sleep latency (Hoedlmoser et al., 2008) increased total
leep time (Cortoos et al., 2010; Hoedlmoser et al., 2008) and sleep
mprovements in ADHD (Arns, 2011). Research has also demon-
trated that melatonin results in an increased sleep spindle density
Dijk et al., 1995) and decreased sleep latency (Van der Heijden
t al., 2007), suggesting overlap in the working mechanisms of SMR
eurofeedback and melatonin. Could there also be an overlap with
CP’s and sleep spindles?

.5. Sleep spindles and slow cortical potentials

Given that the results of SCP neurofeedback and SMR  neuro-
eedback in ADHD are rather similar, and no differential effects
ave been reported on measures such as inattention, impulsivity
nd hyperactivity (Arns et al., 2009; Gevensleben et al., 2009a,b), it
as been speculated that these two forms of neurofeedback might
hare a similar working mechanism.

In SCP neurofeedback surface positivity and surface negativ-
ty are both trained. That is, patients are required to demonstrate
urface positivity or negativity within a 6–8 s time frame, depend-
ng on the instruction provided by the software (‘activation’ or
deactivation’). However, both have different neurophysiological
mplications. Surface negativity indicates depolarization of api-
al dendrites reflective of increased excitation, whereas surface
ositivity probably reflects inhibition or a reduction of cortical exci-
ation (Birbaumer et al., 1990). SCP neurofeedback hence seems
o differ from SMR  neurofeedback in that patients are taught ‘self
egulation’.

Currently there is no published evidence that SMR  neuro-
eedback results in increased EEG power in this frequency range
ost-treatment. Several studies have demonstrated learning curves
f SMR  power increases within training sessions e.g. Sterman & Friar
1972) and Lubar and Shouse (1976) reflective of a learning process.
ne recent study actually reported a

decreased SMR  power post-treatment with SMR  enhancement
eurofeedback in ADHD patients who all were responders to treat-
ent (Arns et al., 2012). Furthermore, Pineda et al. (2008) in a

ouble-blind, placebo controlled design demonstrated that mu-
nhancement training (8–13 Hz) in autism resulted in improved
u-suppression post-treatment as well as improvement in autism

ymptoms. Therefore, these results rather suggest that SMR  neu-
ofeedback is not about increasing the EEG power in a specific
requency range, but rather about regulating activity within a func-
ional network (reticulo-thalamocortical network, also see Section
.6), thereby increasing the synaptic strength within this network,
esulting in long-term potentiation (LTP) which increases synaptic
ensitivity and the probability of future activation in this network
Sterman and Egner, 2006). This is further supported by studies
hat actually trained SMR  neurofeedback in the exact same way
s SCP’s are trained, e.g. patients had to increase or decrease their
heta/Beta ratio during a pre-set interval depending on the instruc-
ions from the software (arrow up, ‘activation’ or arrow down,
deactivation’), and these studies also demonstrated clinical effects
n ADHD (Leins et al., 2007; Holtmann et al., 2009).
Please cite this article in press as: Arns, M.,  Kenemans, J.L., Neurofeedb
spindles and circadian networks. Neurosci. Biobehav. Rev. (2012), http

The sleep EEG during NREM sleep is not only characterized by
leep spindles and delta oscillations, but also by cortically gener-
ted slow oscillations at frequencies lower then 1 Hz (Azica and
teriade, 1997; Evans, 2003; Sinha, 2011). Although the sleep
 PRESS
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spindle oscillations are generated in a reticulo-thalamocortical net- 

work (Sinha et al., 2011), neocortical control over this sleep spindle 

circuit is established via generation of slow oscillations, where the 

depolarizing phase is associated with increased neuronal firing, 

which drives the thalamic spindle generator via cortico-thalamic 

efferents (Marshall et al., 2003; Steriade and Amzica, 1998; Steri- 

ade, 1999; Timofeev et al., 2000). 

The transition from wakefulness to sleep in humans is char- 

acterized by a negative DC shift (Marshall et al., 1996, 2003). 

Furthermore, clear temporal interrelations between the occurrence 

of sleep-spindles and brief shifts to surface negativity have been 

described (Caspers and Schulze, 1959; Marshall et al., 2003) and a 

clear cross-correlation between the negative DC potential and sleep 

spindle activity across time with correlation coefficients around 

.80 with zero time lag have been reported (Marshall et al., 2003). 

Furthermore, Mölle et al. (2002) concluded that slow oscillations
serve a function in ‘grouping’ sleep related EEG activities such as
sleep spindles (Mölle et al., 2002) in agreement with the conclusion
that these cortical slow waves are known to trigger sleep spindles 

and control the faster delta waves originating from the thalamus
(Azica and Steriade, 1997; Evans, 2003; Sinha, 2011). Interestingly, 

transcranial slow oscillation stimulation (0.75 Hz) during NREM 

sleep, but not stimulation at 5 Hz, improved declarative memory 

(Marshall et al., 2005, 2006) and resulted in increased sleep spin- 

dle density (both increased power in the sleep spindle range and 

increased spindle counts) (Marshall et al., 2006), further demon- 

strating the causal nature between these slow oscillations and sleep 

spindle generation, or as Marshall et al. (2006) concluded: ‘. . .agrees 

well with the notion that neocortical slow oscillations drive the thala- 

mic generation of spindles. . .’  (Marshall et al., 2006; p. 611). 

Therefore, it is proposed that SCP neurofeedback and SMR  neu- 

rofeedback share their mechanism by both tapping into a network 

related to induction and triggering of sleep spindles. 

2.6. Sleep spindles and circadian regulation 

Sleep spindles are generated by the GABA-ergic thalamic 

reticular neurons and are synchronized through glutamatergic
cortico-thalamic projections (De Gennaro and Ferrara, 2003). The 

spindle oscillation generated in the reticular neurons is transferred
to thalamocortical relay cells in the dorsal thalamic nuclei through 

GABAergic synapses, producing inhibitory postsynaptic potentials
(IPSPs) and travel through glutamatergic thalamocortical axons to 

generate rhythmic excitatory postsynaptic potentials (EPSPs) in the 

cortex (Sinha, 2011). As pointed out above, cortical slow oscilla- 

tions trigger sleep spindles from the thalamus (Azica and Steriade, 

1997; Evans, 2003; Sinha, 2011; Marshall et al., 2006), thereby 

explaining how SCP neurofeedback training might influence sleep 

spindle generation. Furthermore, SMR  neurofeedback is hypothe- 

sized to directly train the sleep spindle circuit given the overlap in 

frequency and location and as evidenced by studies demonstrat- 

ing an increase in sleep spindle density after SMR  neurofeedback 

(Hoedlmoser et al., 2008; Sterman et al., 1970). 

As stated earlier, there is a strong circadian modulation of sleep 

spindles (De Gennaro and Ferrara, 2003; Dijk et al., 1997) and mela- 

tonin has been demonstrated to result in increased sleep spindle 

density (Dijk et al., 1995) suggesting an interplay between the 

SCN and the sleep spindle circuitry. Interestingly, Aston-Jones et al. 

(2001) have described an indirect connection from the SCN to the 

noradrenergic locus coeruleus (LC) via projections to the dorsome- 

dial nucleus of the hypothalamus (DMH). In turn the noradrenergic 
ack in ADHD and insomnia: Vigilance stabilization through sleep
://dx.doi.org/10.1016/j.neubiorev.2012.10.006

LC is part of a set of subcortical nuclei that regulate activation of 771

the sleep spindle generating circuitry (Sinha, 2011). Furthermore, 772

as explained in more detail by Hegerl in this same issue, the nora- 773

drenergic LC plays a crucial role in vigilance stabilization. 774

dx.doi.org/10.1016/j.neubiorev.2012.10.006
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. Conclusion

In this review article the history and current status of neu-
ofeedback for the treatment of ADHD and insomnia have been
ummarized.

We  have demonstrated that SMR  and SCP neurofeedback have
he ability to directly impact the sleep spindle circuit resulting in
ncreased sleep spindle density during sleep. Increased sleep spin-
le density has been demonstrated to be associated with improved
leep quality, including decreased sleep latency and increased sleep
uration, resulting in normalization of SOI. This normalization of
OI (and thus the relief of sustained sleep restriction) will eventu-
lly result in vigilance stabilization mediated by the noradrenergic
ocus couruleus in turn resulting in improvements of inattention,
yperactivity and impulsivity in ADHD. The effects of activation
e.g. LC) on the sleep spindle circuitry have been documented
Sinha, 2011), however to the authors knowledge no direct link
rom the sleep spindle circuitry on the LC has been documented,
herefore we speculate this is a reciprocal link and LC activation
ill occur along with the normalization of sleep and the model pre-
icts that this will occur with a time lag, and will not occur during
eurofeedback but will be seen better at follow-up.

In this view then, a circadian phase delay characterized by
OI is considered the core pathophysiology in this sub-group of
DHD, with an estimated prevalence of 72–78% (Van der Heijden
t al., 2005; Van Veen et al., 2010). Although neurofeedback does
ot target this circadian phase delay in the SCN or pineal gland
irectly, it does so at the level of subcortical and cortical struc-
ures, which mediate sleep spindle production and sleep onset.
hese improvements on ADHD symptoms will most likely occur
ith a delayed effect of onset, as was found for melatonin treat-
ent in ADHD (Hoebert et al., 2009). This is also supported by

he tendency for further improvements at follow-up for neuro-
eedback, which was seen in Fig. 2 and by the effects of long-term
leep restriction in healthy volunteers where the impairments on
ttention take more recovery nights to normalize than the actual
umber of nights of sleep restriction (Axelsson et al., 2008; Belenky
t al., 2003). The model also predicts that QEEG normalizations such
s reduced frontal theta and frontal alpha seen after neurofeed-
ack will be most prominent at follow-up, rather than directly at
uttake.

In line with this delayed onset of effect of ADHD symptoms, an
nteresting hypothesis deserving further study is that neurofeed-
ack might require fewer sessions. Sessions might be terminated
hen SOI is normalized, with other findings normalizing over time
ith no additional neurofeedback. Improvements in sleep are the
ost often reported ‘side-effects’ of children and adults with ADHD

reated with neurofeedback, and the biggest improvements in sleep
ake place in approximately 20 sessions as measured with the
ittsburgh Sleep Quality Inventory (PSQI) (Arns, 2011). Note that,
n the present view, once sleep-onset latencies and sleep qual-
ty have been normalized, it takes an additional amount of time
or ADHD symptoms to improve (see Fig. 2). In contrast to the
ersistent and improving findings in Neurofeedback studies, the
ffects of melatonin disappear when the treatment is discontin-
ed. Hence future studies should incorporate polysomnography,
nd actigraphy (Hoebert et al., 2009; Van der Heijden et al., 2007;
an Veen et al., 2010), and investigate whether the normalization
f SOI is consistently related to improvements in ADHD symptoms
nd to quantify the delay in onset more completely. Furthermore,
linical trials of new treatments for ADHD should consider evaluat-
ng primary treatment endpoints at follow-up, after 6–12 months,
Please cite this article in press as: Arns, M.,  Kenemans, J.L., Neurofeedb
spindles and circadian networks. Neurosci. Biobehav. Rev. (2012), http

ather than directly at the end of treatment, in order to iden-
ify treatments that have lasting effects. Differentiating long term
ersus temporary treatment effects is especially important since
t was recently concluded based on the large NIMH-MTA trial
 PRESS
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that conventional treatments in ADHD such as stimulant medica- 

tion, multicomponent behavior therapy and combined treatment 

had no effects beyond 2 years following treatment (Molina et al., 

2009). This identification of the longer term failure of conven- 

tional ADHD treatment approaches further stresses the need for the 

identification and development of new treatments with long-term 

effects. 

4. Limitations and directions for future research 

This review provides a model which can explain the behav- 

ioral complaints in a sub-group of ADHD, and how chronobiological 

treatments and neurofeedback exert their clinical effects in ADHD 

and insomnia. Obviously such a model results in more testable
questions than answers. Obviously there are also inherent limita-
tions and weaknesses to this model.

The effects of sleep restriction in children have been most clearly 

replicated for inattention, but only 1 study found effects on exter-
nalizing behaviors such as hyperactivity. On the other hand, the 

extensive meta-analysis by Astill et al. (2012) in 35.936 children 

found clear relationships between sleep duration and school per- 

formance, executive function and externalizing behavior, but not 

for sustained attention. Therefore, this aspect of the model requires 

further study such as longer sleep restriction studies, sleep restric- 

tion studies in ‘ADHD risk’ populations. The implications of this 

model thus are clearest for the circadian delay sub-group of ADHD 

patients, and might not generalize to explain all of the forms of 

ADHD. 

Currently the debate about whether neurofeedback has specific 

effects beyond a ‘sham’ condition continues. This debate is mainly 

centered around whether to evaluate neurofeedback based on APA 

norms, or based on pharmaceutical norms which require a double- 

blind placebo controlled study. Although this pharmaceutical 

standard based approach is not impossible, there are consider- 

able methodological issues to address. One such design-proposal 

was recently submitted for publication by the Collaborative Neu- 

rofeedback Group, which is constituted by Neurofeedback experts, 

mainstream ADHD investigators and clinical trial experts (The 

Collaborative Neurofeedback Group, submitted for publication). 

Such a study might provide more definitive answers though this 

requires further implementation of their proposed study. 

We  have construed our review and model narrowly around 

ADHD and insomnia. There is a rich literature on many other 

applications for which this framework might not provide a valid 

explanation. Some of these include SMR  Neurofeedback resulting in 

reduction of seizures (Tan et al., 2009), in improving micro-surgical 

skills (Ros et al., 2009) and creative acting performance (Gruze- 

lier et al., 2010). Therefore, other effects and explanations of SMR  

and SCP neurofeedback should not be ruled out. Furthermore, this 

review focused on the effects of SCP’s and SMR, and the effects of 

the often included inhibition of Theta, as well as rewarding of the 

higher beta-band and inhibition of EMG  activity, none of which 

have been covered in this review. Further research should focus 

on investigating the independent contribution of these additional 

inhibits and rewards. 

This review focused on the relationship between circadian phase 

delay resulting in sleep restriction and changes in vigilance. As 

pointed out earlier, other sleep disorders are also prevalent in 

ADHD, such as restless legs, sleep apneas and parasomnias. Such 

sleep disorders obviously require a different treatment approach.
ack in ADHD and insomnia: Vigilance stabilization through sleep
://dx.doi.org/10.1016/j.neubiorev.2012.10.006

Chronobiological treatments, such as light therapy and melatonin, 898

as well as treatment with neurofeedback are not indicated for these 899

sleep disorders. For a review of these as well as other sleep disor- 900

ders, see Miano et al. (2012) who have described in more detail 901

dx.doi.org/10.1016/j.neubiorev.2012.10.006
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